UNIVERSITY OF NORTH BENGAL

B.Com. Honours 4th Semester Examination, 2023

CC9-Commerce

Business Mathematics

The figures in the margin indicate full marks.

GROUP-A

Answer any two questions $\quad 12 \times 2=24$

1. (a) Show that

$$
\left|\begin{array}{lll}
b c & a & a^{2} \\
c a & b & b^{2} \\
a b & c & c^{2}
\end{array}\right|=(a-b)(b-c)(c-a) \cdot(a b+b c+c a)
$$

(b) Solve by Inverse Matrix Method:

$$
\begin{gathered}
x+2 y-z=9 \\
2 x-y+3 z=-2 \\
3 x+2 y+3 z=9
\end{gathered}
$$

2. (a) Evaluate the following (any two):
(i) $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{x}$
(ii) $\lim _{x \rightarrow 0} \frac{\log (1+x)+x}{e^{x}-1}$
(iii) $\lim _{n \rightarrow \infty} \frac{5 n^{12}+7 n^{9}+12}{14 n^{16}+9 n^{2}-3}$
(b) A function is defined as follows:

$$
\begin{aligned}
f(x) & =3 x-1 & & \text { if } x<2 \\
& =k & & \text { if } x=2 \\
& =2 x+1 & & \text { if } x>2
\end{aligned}
$$

For what value of k, the function $f(x)$ is continuous when $x=2$?
(c) Find from the first principle the derivative of \sqrt{x}.
3. (a) The total cost function C for producing x units of an article per day is given by $C=₹\left(x^{2}-16 x+400\right)$. Find the average cost function and level of output at which this function is minimum.
(b) Verify Euler's theorem for the function

$$
F(x, y)=2 x^{3}-11 x^{2} y+3 y^{3}
$$

(c) If $x^{p} \cdot y^{q}=(x+y)^{p+q}$, show that $\frac{d y}{d x}=y / x$.

UG/CBCS/B.Com./Hons./4th Sem./Commerce/COMCC9/2023

4. A firm produces two different products A and B. Each product has to undergo three operations- cutting, mixing and packaging. The maximum capacity available in cutting, mixing and packaging departments are 24 hours, 21 hours and 9 hours respectively. Each unit of product A takes 1 hour in cutting, 3 hours in mixing and 1 hour in packaging operations. One unit of product B takes 4 hours in cutting, 1 hour in mixing and 1 hour in packaging. Profit per unit of product A is Rs. 2 and that of product B is Rs. 5. Determine the optimum product-mix so that profit is maximum. Formulate the LPP and solve it by simplex method.

GROUP-B

5. Answer any four questions:
(a) The difference between the simple and compound interest on a certain sum for 2 years at 5% p.a. is ₹ 75 . Find the compound interest on the sum for 7 years at 8% p.a. (Given $\log 1.05=0.0212$ and $\log 1.08=0.0334$)
(b) If $u=\log \left(x^{2}+y^{2}\right)$, show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
(c) A person is eligible to get pension at $₹ 2,40,000$ p.a. after his retirement payable in half-yearly installment for the rest of his life. Reckoning his expectation of life to be 15 years and interest is at 10% p.a. payable half-yearly, what single sum is equivalent to his pension?
(d) What are the basic assumptions of linear programming?
(e) Evaluate:
(i) $\int_{1}^{2} x \log x d x$
or
(ii) $\int \frac{x e^{x}}{(x+1)^{2}} d x$
(f) If $y^{x}=e^{y-x}$, show that $\frac{d y}{d x}=\frac{(\log e y)^{2}}{\log y}$.

GROUP-C

6. Answer any four questions:
(a) If $x^{2}+y^{2}=a^{2}$, show that $\frac{d^{2} y}{d x^{2}}=-a^{2} / y^{3}$.
(b) If $f(x)=e^{a x+b}$, prove that $e^{b} f(x+y)=f(x) \cdot f(y)$.
(c) Find the amount if ₹ 1000 put out for 4 years @ 5% p.a. compound interest.
(d) Define feasible solution and slack variables in LPP.
(e) Evaluate $\int(3 x+4)^{5 / 3} d x$.
(f) Given $A=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right]$. Find $(A B)^{T}$.
